
dla którego wypchany prostokąt o obwodzie 2k ma pole
co najmniej n.
Prostokąt ograniczający figury realizującej minimalny obwód dla
danego pola nie musi być wypchany. Ważne, że istnieje wśród nich
(figur minimalizujących. . . ) choć jedna o tej własności.

Niech k będzie największą liczbą całkowitą spełniającą
k2 < n. Wtedy albo n kafelków mieści się w prostokącie
k×(k + 1), albo dopiero w kwadracie (k + 1)×
(k + 1). Pierwszy przypadek oznacza, że k2 <
n ⩽ k2 + k, co po pomnożeniu przez 4 daje 4k2 <
4n ⩽ 4k2 + 4k. Jeśli z prawej strony dodamy 1, to
nierówność będzie zachowana, a zyskamy możliwość
zwinięcia do kwadratu: (2k)2 < 4n ⩽ (2k + 1)2, czyli
2k <

√
4n ⩽ 2k + 1. To oznacza ni mniej, ni więcej,

tylko ⌈2
√

n⌉ = 2k + 1. Drugi przypadek jest analogiczny.
Wiedząc, że k2 + k < n ⩽ (k + 1)2, ponownie mnożymy
przez 4 i otrzymujemy, że (2k + 1)2 ⩽ 4n ⩽ (2k + 2)2.
Dodając 1 do 4k2 + 4k, pozornie straciliśmy silną
nierówność, ale zauważmy, że (2k + 1)2 jest liczbą
nieparzystą, czyli równość jednak nie może wystąpić.
Po spierwiastkowaniu otrzymujemy ⌈2

√
n⌉ = 2k + 2.

W obu przypadkach sufit z podwojonego pierwiastka

okazuje się połową obwodu odpowiedniego wypchanego
prostokąta, czyli ostatecznie minimalny obwód dla n
kwadratowych kafelków wynosi 2⌈2

√
n⌉.

Na koniec jeszcze krótka uwaga: jak ten wzór można
szybko wyprowadzić metodą „na chłopski rozum”.
Można odgadnąć (formalny dowód mamy zresztą
za sobą), że dla n będących kwadratami wartość
minimalnego obwodu wynosi 4

√
n. Pozostaje ustalić, jak

zaokrąglamy powyższą liczbę, gdy nie jest całkowita.
Obwód musi być parzysty, ponadto przyjmijmy, że
zaokrąglamy w górę. Takie zaokrąglanie (do nie
mniejszej liczby parzystej) ma postać 2⌈x/2⌉ (proszę
sprawdzić), co po podstawieniu x = 4

√
n daje „nasz

wzór”.

Jako przedsmak przyszłej odsłony przygody z obwodami
spróbujmy teraz poukładać kafelki w kształcie
równobocznych trójkątów. Zabawa nimi jest nieco
trudniejsza, gdyż brakuje tu tak wspaniałego
sprzymierzeńca jak papier w kratkę.
Istnieje papier w „trójkątną kratkę”, ale chyba nie każdy ma go
w domu.

Tym razem jakakolwiek różnorodność pojawia się dopiero przy czterech polach,
choć wszystkie trzy przypadki mają ten sam obwód (6). Dla pięciu kafelków
również każda konfiguracja daje taki sam obwód (7). Do tego momentu
otrzymujemy bardzo przyjemny postęp arytmetyczny, ale sześć trójkątów
równobocznych pozwala nam zbudować sześciokąt foremny, którego obwód
wynosi 6. Okazuje się, że funkcja minimalnego obwodu dla kafelków trójkątnych

Kształty ułożone z 1–5 trójkątów
równobocznych. Nazywa się je
„poliamondami”, ponieważ po angielsku
dwa trójkąty tworzą „di-amond”
(karo, ♢). Jako że „diament” nie jest
w Polsce zwyczajową nazwą rombu,
moglibyśmy nazywać konfiguracje
trójkątów „poliapezami”, skoro trzy
tworzą „tr(i)-apez”. . .

nie jest nawet monotoniczna!
Można by się spodziewać, że dla dużych n obwód „okrągłej masy” trójkątów
zacznie zachowywać się „normalnie”, ale w pewnym sensie „skacze” jeszcze
bardziej:

3, 4, 5, 6, 7,
▽
6, 7, 8, 9,

▽
8, 9, 10,

▽
9, 10, 11,

▽
10, 11, 12,

▽
11, 12, 13,

▽
12, 13,

▽
12, 13, 14, . . .

Dopełnieniem tego obrazu grozy jest jawny wzór:
2

⌈
n+

√
6n

2

⌉
− n.

Jego elementarne wyprowadzenie przedstawimy w części drugiej.

Bryły rozpięte na krzywych Jarosław GÓRNICKI*
Znany już w starożytności problem izoperymetryczny:* Kontakt: gornicki59@gmail.com

Który z trójkątów o ustalonym obwodzie ma największe pole?
rozwiążemy elementarnie, korzystając z nierówności między średnimi.
Przypomnijmy, że średnia geometryczna dodatnich liczb jest nie większa niż ich
średnia arytmetyczna. Dla trzech dodatnich liczb x, y, z stwierdzenie to przybiera
postać:Czytelników, którzy nie znają dowodu

tego faktu, zachęcamy do wykazania go,
szczególnie w używanym w tym artykule
przypadku trzech liczb.

3
√

xyz ⩽
1
3(x + y + z),

więc jeśli x + y + z = d, to iloczyn xyz ma wartość największą, gdy
x = y = z = 1

3 d, bo wtedy xyz = ( 1
3 d)3 = [ 1

3 (x + y + z)]3.
Pole trójkąta o bokach długości a, b, c można łatwo obliczyć, korzystając ze
znanego już od I wieku wzoru Herona:

S =
√

p(p − a)(p − b)(p − c), gdzie p = 1
2(a + b + c),

dlatego przy ustalonym obwodzie a + b + c wartość S jest największa, gdy
p − a = p − b = p − c, czyli gdy a = b = c.
Wykazaliśmy więc twierdzenie:
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Twierdzenie 1. Trójkąt o danym obwodzie ma największe pole, gdy jest
równoboczny.

Prawdziwy jest fakt ogólniejszy (znany już w starożytnej Grecji):

Twierdzenie 2 (Zenodor, III/II w. p.n.e.). Wielokąt o ustalonym obwodzie ma
największe pole, gdy jest foremny.

Problematyka „ekstremalna” w przestrzeni trójwymiarowej (czyli w przestrzeniRozwiązanie problemu
izoperymetrycznego podane jest
w książce: J. Górnicki, Okruchy
matematyki, WN PWN, Warszawa 2009,
w artykułach Nierówności, wypukłość
i ekstrema oraz Własności ekstremalne
figur izoperymetrycznych.

euklidesowej R3) jest odrobinę bardziej kłopotliwa. Naszym celem będzie
rozwiązanie elementarnymi środkami następującego problemu:

Problem. Jaki kształt krzywej (prostowalnej) o długości L zapewnia, że
najmniejszy zbiór wypukły zawierający tę krzywą ma największą objętość.

Problematyka ta pojawiła się w XX wieku m.in. w pracach J. Egerváry’ego,Krzywą nazywamy prostowalną, gdy
istnieje możliwość określenia jej długości
jako granicy ciągu długości łamanych
coraz lepiej ją przybliżających.

M. Krejna, Z. Melzaka, A. Nudelmana, I. Schoenberga.

Czworościan ekstremalny. Zacznijmy od prostej sytuacji. Łamaną o czterech
wierzchołkach, które nie leżą w jednej płaszczyźnie, nazywamy szkieletem
czworościanu (rys. 1). Nasz problem w tym przypadku ma postać: jaki szkielet
ABCD o danej długości AB + BC + CD = L rozpina czworościan ABCD
o największej objętości?

Rozwiążemy ten problem, sprowadzając go do omówionego już problemu

Rys. 1

izoperymetrycznego na płaszczyźnie. Przyjmijmy, że w czworościanie ABCD
długość boku AD jest równa h (oczywiście h < L). Niech Π będzie płaszczyzną
prostopadłą do boku AD zaczepioną w punkcie A. Wtedy rzut prostopadły
czworościanu ABCD na płaszczyznę Π jest trójkątem AEF (rys. 2).

A
B

C

D

E

F Π

Rys. 2

Lemat 1. Objętość V czworościanu ABCD dana jest wzorem

(1) V = 1
3hS,

gdzie h jest długością boku AD, a S jest polem trójkąta AEF .

Czworościany ABCD i ABFD mają wspólną ścianę – trójkąt ABD. Ponieważ
punkty C i F są w takiej samej odległości od płaszczyzny trójkąta ABD,
więc objętości tych czworościanów są równe. Podobnie czworościany ABFD
i AEFD mają wspólną ścianę – trójkąt AFD. Punkty B i E są w takiej samej
odległości od płaszczyzny trójkąta AFD, więc objętości tych czworościanów są
równe. Zatem czworościany ABCD i AEFD mają równe objętości, a objętość
czworościanu AEFD wyraża się wzorem (1). 2

Lemat 2. Szkielet ABCD o długości L i odległości AD = h (h < L) rozpina
czworościan ABCD o największej objętości, gdy boki AB, BC, CD mają równe
długości i tworzą z odcinkiem AD kąty równe α = arc cos h

L .

Zgodnie ze wzorem (1) objętość V czworościanu ABCD będzie największa, gdy
największe będzie pole S, bo h jest ustalone. Musimy więc określić długość
i położenie w przestrzeni boków AB, BC i CD tak, aby pole trójkąta AEF było
największe. Zgodnie z twierdzeniem 1 osiągniemy to, jeśli zmaksymalizujemy
obwód trójkąta AEF, jednocześnie sprawiając, że będzie to trójkąt równoboczny.

Bryła DABEFC jest wielościanem wypukłym o podstawie trójkątnej i ścianach
bocznych prostopadłych do płaszczyzny Π.

A

D

F E

C
B

Ā

Rys. 3. Sytuacja przed optymalizacją

Wielościan to bryła ograniczona
płaszczyznami. Wielościan jest wypukły,
gdy leży po jednej stronie każdej ze
swoich ścian. Rozetnijmy ten wielościan wzdłuż pionowych krawędzi DA, BE, CF oraz

pozostałych krawędzi szkieletu. Teraz połóżmy ściany DAFC, CFEB, BEA
na płaszczyźnie Π na zewnątrz trójkąta AEF . Następnie przesuńmy je w taki
sposób, aby połączyć je pasującymi do siebie bokami (rys. 3).

α

A

D

F E

C

B

ĀC1 B1

A1

.
L

Rys. 4. Sytuacja po optymalizacji

Odcinek AĀ ma długość równą obwodowi trójkąta AEF , utworzonego z rzutów
prostopadłych odcinków DC, CB, BA na płaszczyznę Π. Rzuty te będą w sumie
najdłuższe, gdy punkty D, C, B, Ā (rys. 3) będą leżały na jednej prostej. Będzie
ona nachylona do odcinka DA pod kątem α = arc cos h

L (rys. 4). Warunki
AF = FE = EA zapewnimy, gdy boki DC, CB, BA szkieletu ABCD będą
tej samej długości. Ten opis jednoznacznie wyznacza położenie wierzchołków
czworościanu: na płaszczyźnie Π stawiamy prawidłowy graniastosłup trójkątny,
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którego pionowa krawędź DA = h (A ∈ Π), a podstawa ma obwód równy√
L2 − h2. Kolejne odcinki DC, CB, BA leżą na kolejnych ścianach bocznych

graniastosłupa, tworząc za każdym razem kąt α = arc cos h
L z odcinkiem DA

(oczywiście ten sam efekt uzyskamy, gdy kolejne odcinki AB, BC, CD będą
tworzyły za każdym razem kąt α z odcinkiem AD). Tak utworzony szkielet
ABCD o długości L i odległości DA = h (h < L) rozpina czworościan ABCD
o największej objętości. 2

Objętość tak określonego czworościanu, zgodnie ze wzorem (1), jest równa
V =

√
3

108 · h(L2 − h2), gdzie 0 < h < L. Łatwo sprawdzamy, że przyjmuje ona
wartość największą dla h = L√

3 , więc czworościan ekstremalny ma objętość równą
1

162 · L3 ≈ 0,006 · L3. Co ciekawe, czworościan foremny o krawędzi L
3 ma objętość

równą
√

2
324 · L3 ≈ 0,0044 · L3, czyli istotnie mniejszą niż czworościan ekstremalny.

Udowodniliśmy więc następujące twierdzenie o czworościanie ekstremalnym:

Twierdzenie 3. Szkielet ABCD o długości L rozpina czworościan
o największej objętości, gdy kolejne boki AB, BC, CD leżą na kolejnych
ścianach bocznych prawidłowego graniastosłupa trójkątnego o pionowej krawędzi
AD = L√

3 i obwodzie podstawy
√

2
3 · L, a każdy z odcinków AB, BC, CD tworzy

z krawędzią AD kąt α = arc cos 1√
3 .

Wielościan ekstremalny. Uogólnijmy teraz rozważania dotyczące
czworościanu ekstremalnego na wielościany o większej liczbie wierzchołków.
Łamaną A0A1A2 . . . An (n ⩾ 3), dla której każda płaszczyzna przechodząca przez
punkty A0 i An (A0 ≠ An) ma nie więcej niż jeden punkt wspólny z łamaną
A1A2 . . . An−1, nazywamy szkieletem.

Przyjmijmy, że szkielet A0A1A2 . . . An−1An ma długość A0A1 + A1A2 +
. . . + An−1An = L, a długość odcinka A0An jest równa h (h < L). Trójkątne
ściany A0A1An, A0A1A2, A0A2A3, . . ., A0An−1An oraz AnAn−1A0,
AnA1A2, AnA2A3,. . ., AnAn−2An−1 wycinają w przestrzeni R3 wielościan
A0A1A2 . . . An−1An rozpięty przez szkielet A0A1A2 . . . An−1An (rys. 5).

Niech Π będzie płaszczyzną prostopadłą do odcinka A0An zaczepioną w punkcie
A0. Wtedy rzut prostopadły wielościanu A0A1A2 . . . An−1An na płaszczyznę Π
jest n-kątem A0A

′

1A
′

2 . . . A
′

n−1 o polu Sn (rys. 5).

Π

A′
1

A′
2

An

A0

A2

A1

A′
n−2

An−2

An−1

A′
n−1

Rys. 5

Ponieważ wielościan A0A1A2 . . . An−1An jest skończoną sumą czworościanów
A0A1A2An, A0A2A3An, . . ., A0An−2An−1An, a do każdego z nich ma
zastosowanie lemat 1, więc prawdziwy jest następujący rezultat:

Lemat 3. Objętość Wn+1 wielościanu A0A1A2 . . . An−1An dana jest wzorem

(2) Wn+1 = 1
3hSn,

gdzie h jest długością odcinka A0An, a Sn jest polem n-kąta
A0A

′

1A
′

2 . . . A
′

n−1.

Korzystając z twierdzenia 2 (Zenodora) oraz powtarzając rozumowanie
uzasadniające lemat 2, uzyskujemy następującą konstrukcję maksymalizującą
objętość wielościanu A0A1A2 . . . An−1An rozpiętego na szkielecie
A0A1A2 . . . An−1An o długości L i odległości A0An = h (h < L): na płaszczyźnie
Π stawiamy prawidłowy graniastosłup n-kątny o pionowej krawędzi A0An = h
(A0 ∈ Π), którego podstawa ma obwód równy

√
L2 − h2. Kolejne odcinki A0A1,

A1A2, . . ., An−1An leżą na kolejnych ścianach bocznych graniastosłupa, tworząc
za każdym razem z odcinkiem A0An kąt α = arc cos h

L .

Ponieważ pole n-kąta foremnego (n ⩾ 3) o boku długości a i kącie środkowym
γ = 2π

n dane jest wzorem Sn = 1
4 na2 ctg γ

2 , więc ze wzoru (2) objętość wielościanu
A0A1A2 . . . An−1An (którego rzut prostopadły na płaszczyznę Π jest n-kątem
foremnym) dana jest wzorem Wn+1 = 1

12 · h(L2 − h2) · 1
n ctg π

n . Objętość ta
jest największa, gdy h = L√

3 , i wówczas Wn+1 = 1
18

√
3 L3 · 1

n ctg π
n . Mamy więc

twierdzenie:
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Twierdzenie 4. Szkielet A0A1 . . . An o długości L rozpina wielościan
o największej objętości, gdy kolejne boki A0A1, . . . , An−1An leżą na kolejnych
ścinach bocznych prawidłowego graniastosłupa n-kątnego o pionowej krawędzi
A0An = L√

3 i obwodzie podstawy
√

2
3 · L, a każdy z odcinków A0A1, A1A2, . . .,

An−1An tworzy z krawędzią A0An kąt α = arc cos 1√
3 .

Π

B

A

M

Rys. 6

Śrubostożek podwójny. Możemy teraz przejść do rozwiązania naszego
oryginalnego problemu. Z geometrii różniczkowej wiemy, że krzywa przestrzenna
leżąca na powierzchni walca jest linią śrubową wtedy i tylko wtedy, gdy styczna
do niej w każdym jej punkcie tworzy stały kąt z kierunkiem osi walca. Zatem
gdy liczba n będzie rosła nieograniczenie, to prawidłowe graniastosłupy n-kątne
coraz „ściślej” będą przylegać do walca o wysokości BA = L√

3 i promieniu
podstawy L

π
√

6 (rys. 6), a łamana BA1A2 . . . An−1A (której kolejne odcinki
tworzą stały kąt α = arc cos 1√

3 z odcinkiem AB równoległym do osi walca) coraz
dokładniej będzie aproksymować krzywą leżącą na powierzchni bocznej walca,
która jest jednym zwojem linii śrubowej (helisy) o skoku L√

3 .Jeśli na prostokątnym arkuszu papieru
narysujemy prostą, która nie jest
prostopadła do któregokolwiek brzegu,
i nawiniemy ten arkusz na walec
o podstawie kołowej, to narysowana linia
prosta przybierze kształt linii śrubowej.
Gdy środek podstawy walca o promieniu

L

π
√

6
jest środkiem kartezjańskiego

układu współrzędnych (oś walca pokrywa
się z osią 0Z), to linia śrubowa o skoku

L√
3

, leżąca na powierzchni bocznej walca
dana jest równaniami parametrycznymi:
x(t) = L

π
√

6
· cos t, y(t) = L

π
√

6
· sin t,

z(t) = L

2π
√

3
· t, gdzie 0 ⩽ t ⩽ 2π oraz

B = (x(0), y(0), z(0)),
A = (x(2π), y(2π), z(2π)) (rys. 6).

Jeśli punkt M porusza się po linii śrubowej, to odcinki BM oraz AM zakreślają
powierzchnie stożkowe i powstaje bryła śrubostożek podwójny (rys. 6). Ponieważ
lim

n→∞
1
n ctg π

n = 1
π , więc objętość tak powstałego śrubostożka podwójnego jest

równa lim
n→∞

Wn+1 = 1
18π

√
3 L3 ≈ 0,01 · L3.

Ostatecznie otrzymujemy rozwiązanie postawionego problemu:
Twierdzenie 5 (J. Egerváry, 1949). Spośród wszystkich brył rozpiętych na
gładkiej krzywej o długości L największą objętość ma bryła będąca otoczką
wypukłą jednego zwoju linii śrubowej o skoku L√

3 na powierzchni walca kołowego
o promieniu podstawy L

π
√

6 .

„Sir Roger Penrose. Geniusz i jego droga do rzeczywistości”
Książka „Sir Roger Penrose. Geniusz i jego droga
do rzeczywistości”” autorstwa Patchena Barssa to
opowieść o jednym z najoryginalniejszych umysłów
XX wieku, matematyku, fizyku i filozofie. Autor
ukazuje swojego bohatera w gronie wybitnych postaci
świata nauki i sztuki, a zarazem na tle środowiska,
z którego wyrastał. Rodzina Penrose’ów to ludzie
utalentowani, których pasja intelektualna kształtowała
atmosferę domu – choć dzieciństwo Rogera nie było
wolne od trudności w przestrzeni emocjonalnej – to
właśnie w tym świecie rodził się jego niezwykły sposób
myślenia.

Podczas lektury tej biografii czytelnik przenosi się
w fascynujący świat idei, teorii i odkryć. Książkę
czyta się jednym tchem – to dynamiczny strumień
faktów biograficznych, przeplatających się z refleksjami
o nauce, matematyce i naturze poznania. Niekoniecznie
trzeba być znawcą fizyki teoretycznej, aby czerpać
przyjemność z lektury, podążając za bohaterem w jego
„podróżach” po tajemniczych strukturach Wszechświata.
Prawda i piękno to motywy wiodące, siła napędowa
w poszukiwaniach Rogera Penrose’a – to pojęcia, które
łączy w swojej naukowej i filozoficznej refleksji. Sam
uczony mówi o procesie odkrywania w sposób ujmujący
prostotą i szczerością:

„A gdy ulegamy fascynacji jakimś zagadnieniem,
kierujemy się jego wewnętrzną estetyką. Czasami

okazuje się, że to, czym się zajmowaliśmy, można
wykorzystać w jakimś innym obszarze, ale w wielu
przypadkach tak nie jest. To jedna z najwspanialszych
cech matematyki. [. . . ] Często robimy coś bez żadnego
powodu, tylko dlatego, że mamy na to ochotę, i właśnie
dzięki temu dokonuje się postęp, który w przeciwnym
razie nigdy by nie nastąpił” [s. 289].
Współpracownicy Penrose’a wspominają jego
nieprawdopodobny, niemal mistyczny sposób myślenia:
„Odkrycia Penrose’a wyglądają tak, jak gdyby były
dziełem jakiejś nadludzkiej formy życia”. Barss nie
pomija jednak bardziej ludzkich wątków – trudności
w relacjach, napięć emocjonalnych i dylematów, które
towarzyszyły uczonemu w życiu osobistym. To postać
z krwi i kości. . . W książce czytamy o jego ludzkich
ograniczeniach, problemach z kobietą, którą poślubił,
oraz jego „muzami” – wybrankami jego potrzeby
twórczej. Dzięki temu portret Penrose’a zyskuje głębię
i wiarygodność.
„Roger Penrose” to opowieść o człowieku, który
całe życie który całe życie próbował dotrzeć do
skraju ludzkiego pojmowania rzeczy. Książkę
polecam wytrawnym poszukiwaczom prawdy
w fizyce, poszukiwaczom estetyki w matematyce,
a przede wszystkim wielbicielom emocji związanych
z odkrywaniem prawdy o życiu wybitnych ludzi.
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