dla ktérego wypchany prostokat o obwodzie 2k ma pole
cO najmniej n.

Prostokat ograniczajacy figury realizujacej minimalny obwéd dla
danego pola nie musi by¢ wypchany. Wazne, ze istnieje wéréd nich
(figur minimalizujacych. ..) cho¢ jedna o tej wlasnosci.

Niech k bedzie najwieksza liczba catkowita spelniajaca
k? < n. Wtedy albo n kafelkéw mieéci sie w prostokacie
kx(k +1), albo dopiero w kwadracie (k + 1) x

(k + 1). Pierwszy przypadek oznacza, ze k? <

n < k? + k, co po pomnozeniu przez 4 daje 4k% <

4n < 4k? + 4k. Jedli z prawej strony dodamy 1, to
nieréwno$é¢ bedzie zachowana, a zyskamy mozliwosé
zwiniecia do kwadratu: (2k)? < 4n < (2k + 1), czyli

2k < v/4n < 2k + 1. To oznacza ni mniej, ni wiecej,

tylko [2/n| = 2k + 1. Drugi przypadek jest analogiczny.

Wiedzac, ze k? + k < n < (k + 1)?, ponownie mnozymy
przez 4 i otrzymujemy, ze (2k +1)? < 4n < (2k + 2)2.
Dodajac 1 do 4k? + 4k, pozornie straciliémy silna
nieréwnogé, ale zauwazmy, ze (2k + 1)? jest liczba
nieparzysta, czyli réwnoé¢ jednak nie moze wystapic.
Po spierwiastkowaniu otrzymujemy [2/n] = 2k + 2.
W obu przypadkach sufit z podwojonego pierwiastka
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Ksztalty utozone z 1-5 tréjkatow
réwnobocznych. Nazywa si¢ je
»poliamondami”, poniewaz po angielsku
dwa trojkaty tworza ,,di-amond”

(karo, ¢). Jako ze ,diament” nie jest

w Polsce zwyczajowa nazwag rombu,
mogliby$my nazywaé konfiguracje
tréjkatéw ,poliapezami”, skoro trzy
tworzg ,tr(i)-apez”. ..

bardziej:

okazuje sie potowg obwodu odpowiedniego wypchanego
prostokata, czyli ostatecznie minimalny obwdd dla n
kwadratowych kafelkéw wynosi 2[2/n].

Na koniec jeszcze krotka uwaga: jak ten wzér mozna
szybko wyprowadzi¢ metoda ,,na chtopski rozum”.
Mozna odgadnaé (formalny dowéd mamy zreszta

za soba), ze dla n bedacych kwadratami wartosé
minimalnego obwodu wynosi 4/n. Pozostaje ustalié¢, jak
zaokraglamy powyzsza liczbe, gdy nie jest calkowita.
Obwdd musi by¢ parzysty, ponadto przyjmijmy, ze
zaokraglamy w gore. Takie zaokraglanie (do nie
mniejszej liczby parzystej) ma postaé 2[x/2] (prosze
sprawdzi¢), co po podstawieniu z = 4,/n daje ,nasz
wzor”.

Jako przedsmak przyszlej odstony przygody z obwodami
sprébujmy teraz poukladaé kafelki w ksztalcie
rownobocznych trojkatow. Zabawa nimi jest nieco
trudniejsza, gdyz brakuje tu tak wspaniatego
sprzymierzenca jak papier w kratke.

Istnieje papier w ,,tréjkatng kratke”, ale chyba nie kazdy ma go
w domu.

Tym razem jakakolwiek réznorodnos¢ pojawia sie dopiero przy czterech polach,
choé wszystkie trzy przypadki maja ten sam obwdd (6). Dla pieciu kafelkow
réwniez kazda konfiguracja daje taki sam obwdd (7). Do tego momentu
otrzymujemy bardzo przyjemny postep arytmetyczny, ale sze$é trojkatow
réwnobocznych pozwala nam zbudowaé szeSciokat foremny, ktérego obwod
wynosi 6. Okazuje sie, ze funkcja minimalnego obwodu dla kafelkow tréjkatnych
nie jest nawet monotoniczna!

Mozna by sie spodziewaé, ze dla duzych n obwdd ,okragltej masy” tréjkatdéw

zacznie zachowywaé sie ,normalnie”, ale w pewnym sensie ,skacze” jeszcze

v v v v v v v
3,4,5,6,7,6,7,8,9,8,9,10,9,10,11,10, 11,12, 11,12, 13, 12,13, 12, 13, 14, . ..

Dopelnieniem tego obrazu grozy jest jawny wzor:

n.

2 [2efE] -

Jego elementarne wyprowadzenie przedstawimy w czedci drugie;j.

Bryly rozpiete na krzywych

* Kontakt: gornicki590gmail.com

Jarostaw GORNICKI*

Znany juz w starozytnoéci problem izoperymetryczny:

Ktory z trojkgtow o ustalonym obwodzie ma najwieksze pole?

rozwiazemy elementarnie, korzystajac z nieréwnosci miedzy $rednimi.

Czytelnikéw, ktérzy nie znajg dowodu
tego faktu, zachecamy do wykazania go,
szczegblnie w uzywanym w tym artykule
przypadku trzech liczb.

Przypomnijmy, ze érednia geometryczna dodatnich liczb jest nie wieksza niz ich
Srednia arytmetyczna. Dla trzech dodatnich liczb x,y, z stwierdzenie to przybiera
postac:

1
Vryz < 3
wiec jesli x + y 4+ z = d, to iloczyn xyz ma wartosé najwieksza, gdy
rT=y=2z= %d, bo wtedy zyz = (%d) = [%(:c +y+2)]3.

(z+y+2),

Pole trojkata o bokach dlugosci a, b, c mozna tatwo obliczyé¢, korzystajac ze
znanego juz od I wieku wzoru Herona:

S=pp—a)(p—b)(p—c), gdzie p= %(a+b+c)7

dlatego przy ustalonym obwodzie a + b + ¢ warto$¢ S jest najwieksza, gdy
p—a=p—b=p—c,czyligdya=0b=c.

Wykazalismy wiec twierdzenie:
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Rozwigzanie problemu
izoperymetrycznego podane jest

w ksigzce: J. Gérnicki, Okruchy
matematyki, WN PWN, Warszawa 2009,
w artykutach Nierédwnosci, wypuklosé

i ekstrema oraz Wlasnosci ekstremalne
figur izoperymetrycznych.

Krzywsa nazywamy prostowalng, gdy
istnieje mozliwosé okreslenia jej dtugosci
jako granicy ciagu dlugosci tamanych
coraz lepiej ja przyblizajacych.

Rys. 2
D
¢ B
A F E A

Rys. 3. Sytuacja przed optymalizacja

Wieloscian to bryla ograniczona
plaszczyznami. Wieloscian jest wypukly,
gdy lezy po jednej stronie kazdej ze
swoich $§cian.

D C1 B, A
«
C
L B
A F E Aq

Rys. 4. Sytuacja po optymalizacji

Twierdzenie 1. Trojkgt o danym obwodzie ma najwieksze pole, gdy jest
rownoboczny.

Prawdziwy jest fakt ogélniejszy (znany juz w starozytnej Grecji):

Twierdzenie 2 (Zenodor, III/II w. p.n.e.). Wielokgt o ustalonym obwodzie ma
najwieksze pole, gdy jest foremny.

Problematyka ,ekstremalna” w przestrzeni tréjwymiarowej (czyli w przestrzeni
euklidesowej R?) jest odrobine bardziej klopotliwa. Naszym celem bedzie
rozwigzanie elementarnymi $rodkami nastepujacego problemu:

Problem. Jaki ksztalt krzywej (prostowalnej) o dlugosci L zapewnia, zZe
najmniejszy zbior wypukly zawierajgcy te krzywg ma najwiekszqg objetosé.

Problematyka ta pojawila si¢ w XX wieku m.in. w pracach J. Egervary’ego,
M. Krejna, Z. Melzaka, A. Nudelmana, I. Schoenberga.

Czworoscian ekstremalny. Zacznijmy od prostej sytuacji. Lamana o czterech
wierzchotkach, ktore nie leza w jednej plaszczyznie, nazywamy szkieletem
czworo$cianu (rys. 1). Nasz problem w tym przypadku ma postaé: jaki szkielet
ABCD o danej dtugosci AB + BC + CD = L rozpina czworo$cian ABC D

o najwiekszej objetosci?

Rozwiazemy ten problem, sprowadzajac go do oméwionego juz problemu
izoperymetrycznego na plaszczyznie. Przyjmijmy, ze w czworoscianie ABCD
dlugosé boku AD jest réwna h (oczywiscie h < L). Niech II bedzie plaszczyzna
prostopadla do boku AD zaczepiong w punkcie A. Wtedy rzut prostopadty
czworoscianu ABCD na plaszczyzne II jest trojkatem AEF (rys. 2).

Lemat 1. Objetosé V' czworoscianu ABCD dana jest wzorem
1
gdzie h jest dlugoscig boku AD, a S jest polem trojkgta AEF.

Czworosciany ABCD i ABF D maja wspolng $ciane — tréjkat ABD. Poniewaz
punkty C i F' sg w takiej samej odlegtosci od ptaszczyzny tréjkata ABD,

wiec objetosci tych czworoscianéw sa réwne. Podobnie czworosciany ABE D

i AEFD maja wspolng $ciang — tréjkat AFD. Punkty B i E sa w takiej samej
odleglosci od plaszezyzny tréjkata AF D, wiec objetosci tych czworoécianéw sa
réwne. Zatem czworosciany ABCD i AEF D maja réwne objetosci, a objetosé

czworoécianu AEF D wyraza si¢ wzorem (1). O

Lemat 2. Szkielet ABCD o dilugosci L i odleglo$ci AD = h (h < L) rozpina
czworoscian ABCD o najwiekszej objetosci, gdy boki AB, BC, CD majg réwne
diugosci i tworzq z odcinkiem AD kqty rowne o = arc cos %

Zgodnie ze wzorem (1) objetosé V' czworoscianu ABCD bedzie najwigksza, gdy
najwieksze bedzie pole S, bo h jest ustalone. Musimy wiec okresli¢ dlugosé

i polozenie w przestrzeni bokéw AB, BC' i CD tak, aby pole tréjkata AEFE bylo
najwieksze. Zgodnie z twierdzeniem 1 osiagniemy to, jesli zmaksymalizujemy
obwdd tréjkata AEF, jednoczesnie sprawiajac, ze bedzie to tréjkat réwnoboczny.

Bryla DABEFC jest wieloScianem wypuklym o podstawie tréjkatnej i Scianach
bocznych prostopadtych do ptaszczyzny II.

Rozetnijmy ten wielo$cian wzdluz pionowych krawedzi DA, BE, C'F oraz
pozostatych krawedzi szkieletu. Teraz potézmy éciany DAFC, CFEB, BEA
na plaszczyznie II na zewnatrz tréjkata AEF. Nastepnie przesufimy je w taki
sposé6b, aby polaczyé je pasujacymi do siebie bokami (rys. 3).

Odcinek AA ma dlugo$é réwna obwodowi tréjkata AEF, utworzonego z rzutéw
prostopadlych odcinkéw DC, CB, BA na plaszczyzne II. Rzuty te beda w sumie
najdiuzsze, gdy punkty D,C, B, A (rys. 3) beda lezaly na jednej prostej. Bedzie
ona nachylona do odcinka DA pod katem « = arc cos% (rys. 4). Warunki

AF = FE = FEA zapewnimy, gdy boki DC, CB, BA szkieletu ABCD beda

tej samej dlugosci. Ten opis jednoznacznie wyznacza polozenie wierzchotkéw
czworo$cianu: na plaszczyznie Il stawiamy prawidlowy graniastostup tréjkatny,
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ktérego pionowa krawedZz DA = h (A € II), a podstawa ma obwdd réwny

V' L? — h2. Kolejne odcinki DC, CB, BA lezg na kolejnych $cianach bocznych
graniastostupa, tworzac za kazdym razem kat o = arccos % z odcinkiem DA
(oczywiscie ten sam efekt uzyskamy, gdy kolejne odcinki AB, BC, CD beda
tworzyly za kazdym razem kat a z odcinkiem AD). Tak utworzony szkielet
ABCD o dhugoéci L i odlegtosci DA = h (h < L) rozpina czworoscian ABC'D

o najwiekszej objetosci. O

Objetosé tak okreslonego czworoscianu, zgodnie ze wzorem (1), jest réwna

V= % - h(L? — h?), gdzie 0 < h < L. Latwo sprawdzamy, Ze przyjmuje ona

warto$¢ najwigksza dla h = %, wiec czworoscian ekstremalny ma objeto$é réwna

1
162

rownag

L3 2~ 0,006 - L3. Co ciekawe, czworoécian foremny o krawedzi % ma objetosé

V2

357 ° L? 20,0044 - L2, czyli istotnie mniejsza niz czworoécian ekstremalny.

Udowodniliémy wiec nastepujace twierdzenie o czworoscianie ekstremalnym:

Twierdzenie 3. Szkiclet ABC'D o diugo$ci L rozpina czworoscian
o najwieckszej objetosci, gdy kolejne boki AB, BC, CD lezqg na kolejnych
Scianach bocznych prawidlowego graniastostupa trojkgtnego o pionowej krawedzi

AD = % 1 obwodzie podstawy \/g L, a kazdy z odcinkow AB, BC, CD tworzy

. _ 1
z krawedzig AD kgt o = arccos 7

Wieloscian ekstremalny. Uogélnijmy teraz rozwazania dotyczace
czworo$cianu ekstremalnego na wielosciany o wigckszej liczbie wierzchotkdw.
Lamana AgAi1As... A, (n > 3), dla ktérej kazda plaszczyzna przechodzaca przez
punkty Ag i A, (Ao # A,,) ma nie wiecej niz jeden punkt wspdlny z tamana
Ay As ... A, 1, nazywamy szkieletem.

Przyjmijmy, ze szkielet AgA;1As ... A,_1 A, ma dhugoéé AgA; + A1 As +
...+ A, 1A, = L, a dlugosé odcinka AgA,, jest réwna h (h < L). Tréjkatne
éciany AOAlA'r“ AoAlAQ, AOA2A3, ceny AOAn—lAn oraz AnAn—1A07

A A1 Ay, Ay AsAs,. .., AL A, oA, 1 wycinaja w przestrzeni R? wielocian
ApA1As ... A1 A, rozpiety przez szkielet AgA1As. .. An—1 A, (rys. 5).

Niech II bedzie plaszczyzng prostopadia do odcinka AgA,, zaczepiong w punkcie
Ap. Wtedy rzut prostopadly wieloScianu AgA;As ... A,_1 A, na plaszczyzne I1
jest n-katem AgAjA,... A, | opolu S, (rys. 5).

Poniewaz wielo$cian AgA1As ... A,_ 1A, jest skonczong suma czworoscianow
AoAlAgAn, AoAQAgA»,“ ceey AOAn—QAn—lAna a do kaZdego z nich ma
zastosowanie lemat 1, wiec prawdziwy jest nastepujacy rezultat:

Lemat 3. Objetosé Wy, 1 wieloscianu AgA1As ... Ap_1A, dana jest wzorem

1
(2) Wit = ghs'ru
gdzie/ h/jest dliugoéciq odcinka AgAy,, a Sy, jest polem n-kgta
AoA1Ay . A, 4.

Korzystajac z twierdzenia 2 (Zenodora) oraz powtarzajac rozumowanie
uzasadniajace lemat 2, uzyskujemy nastepujaca konstrukcje maksymalizujaca
objeto$¢ wieloscianu AgA1As ... A, 1A, rozpietego na szkielecie

AgAi1Ay ... A1 A, 0 dlugodei L i odleglosci AgA,, = h (h < L): na plaszczyZnie
II stawiamy prawidlowy graniastoshup n-katny o pionowej krawedzi AgA, = h
(Ao € II), ktérego podstawa ma obwdd réwny ' L? — h2. Kolejne odcinki AgAq,
A As, ..., Ap_1A, leza na kolejnych $cianach bocznych graniastostupa, tworzac
za kazdym razem z odcinkiem ApA, kat o = arccos %

Poniewaz pole n-kata foremnego (n > 3) o boku dtugosci a i kacie $rodkowym
¥ = %’T dane jest wzorem S,, = %na2 ctg 3, wiec ze wzoru (2) objetosé wielodcianu
ApA1As ... A1 A, (ktérego rzut prostopadly na plaszezyzne IT jest n-katem
foremnym) dana jest wzorem W, 11 = 75 - h(L? — h?) - L ctg Z. Objetosé ta

1
jest najwieksza, gdy h = %, i wéwezas Wy, = ﬁL?’ - Letg ~. Mamy wigc

n
twierdzenie:
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ApA, = % 1 obwodzie podstawy
An_1 A, tworzy z krawedzig AgA,, ket a = arc cos 7

Twierdzenie 4. Szkielet AgA; ... A, o diugo$ci L rozpina wielo$cian
o najwiekszej objetosci, gdy kolejne boki AgAq,. ..
Scinach bocznych prawidlowego graniastostupa n-kgtnego o pionowej krawedzi

yAn_1A, lezg na kolejnych

\/g - L, a kazdy z odcinkow AgAy, A1As, ...,
1

Srubostozek podwdjny. Mozemy teraz przejéé do rozwiazania naszego
oryginalnego problemu. Z geometrii rézniczkowej wiemy, ze krzywa przestrzenna
lezaca na powierzchni walca jest linig $rubowa wtedy i tylko wtedy, gdy styczna
do niej w kazdym jej punkcie tworzy staly kat z kierunkiem osi walca. Zatem
gdy liczba n bedzie rosta nieograniczenie, to prawidlowe graniastostupy n-katne

L

coraz ,,Scidlej” beda przylega¢ do walca o wysokosci BA = <= i promieniu

V3

podstawy %\/a (rys. 6), a tamana BAj Ay ... A,,_1 A (ktérej kolejne odcinki
tworzg staly kat a = arc cos % z odcinkiem AB réwnoleglym do osi walca) coraz

dokladniej bedzie aproksymowaé krzywa lezaca na powierzchni bocznej walca,

Jesli na prostokatnym arkuszu papieru
narysujemy prosta, ktéra nie jest
prostopadla do ktéregokolwiek brzegu,

i nawiniemy ten arkusz na walec

o podstawie kolowej, to narysowana linia
prosta przybierze ksztalt linii Srubowej.
Gdy $rodek podstawy walca o promieniu
%\/5 jest $érodkiem kartezjanskiego

P
n—o00

rowna lim W, =
uktadu wspéirzednych (o$ walca pokrywa n—00
sie z osig 0Z), to linia $rubowa o skoku
%, lezaca na powierzchni bocznej walca

dana jest rownaniami parametrycznymi:

z(t) = %\/g -cost, y(t) = %\/5 - sint,
2(t) = =L~ - t, gdzie 0 < t < 27 oraz

273
B = (2(0),y(0), 2(0)),
A = (xz(27),y(2m), z(2m)) (rys. 6).

ktéra jest jednym zwojem linii $rubowej (helisy) o skoku %

L

Jedli punkt M porusza sie po linii érubowej, to odcinki BM oraz AM zakreSlaja
powierzchnie stozkowe i powstaje bryla $rubostozek podwdjny (rys. 6). Poniewaz
lim %ctg T = L wiec objetosé¢ tak powstalego srubostozka podwéjnego jest

3 73
s [P~ 0,01 L7,

Ostatecznie otrzymujemy rozwiazanie postawionego problemu:
Twierdzenie 5 (J. Egervary, 1949). Sposréd wszystkich bryl rozpietych na

gladkiej krzywej o dlugo$ci L najwiekszq objetosé ma bryla bedgca otoczkg
wypuklq jednego zwoju linii srubowej o skoku % na powierzchni walca kotowego

0 promieniu podstawy %\/6'

»Sir Roger Penrose. Geniusz i jego droga do rzeczywistosci”

Ksiazka ,,Sir Roger Penrose. Geniusz i jego droga
do rzeczywistosci”” autorstwa Patchena Barssa to
opowies$¢ o jednym z najoryginalniejszych umystow
XX wieku, matematyku, fizyku i filozofie. Autor
ukazuje swojego bohatera w gronie wybitnych postaci
$wiata nauki i sztuki, a zarazem na tle Srodowiska,

z ktérego wyrastal. Rodzina Penrose’éw to ludzie
utalentowani, ktérych pasja intelektualna ksztaltowalta
atmosfer¢ domu — choé dziecinstwo Rogera nie byto
wolne od trudnosci w przestrzeni emocjonalnej — to
wladnie w tym Swiecie rodzil sie jego niezwykly sposéb
myslenia.

Podczas lektury tej biografii czytelnik przenosi sie

w fascynujacy swiat idei, teorii i odkry¢. Ksiazke

czyta si¢ jednym tchem — to dynamiczny strumien
faktéw biograficznych, przeplatajacych sie z refleksjami
0 nauce, matematyce i naturze poznania. Niekoniecznie
trzeba byé znawca fizyki teoretycznej, aby czerpaé
przyjemnosé z lektury, podazajac za bohaterem w jego

»,podrézach” po tajemniczych strukturach Wszech$wiata.

Prawda i piekno to motywy wiodace, sita napedowa

w poszukiwaniach Rogera Penrose’a — to pojecia, ktére
laczy w swojej naukowe]j i filozoficznej refleksji. Sam
uczony mowi o procesie odkrywania w sposéb ujmujacy
prostota i szczeroscia:

»A gdy ulegamy fascynacji jakims zagadnieniem,
kierujemy si¢ jego wewnetrzng estetyka. Czasami
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okazuje sie, ze to, czym sie zajmowaliSmy, mozna
wykorzysta¢ w jakim$ innym obszarze, ale w wielu
przypadkach tak nie jest. To jedna z najwspanialszych
cech matematyki. [...] Czesto robimy co$ bez zadnego
powodu, tylko dlatego, ze mamy na to ochote, i wlasnie
dzieki temu dokonuje sie postep, ktory w przeciwnym
razie nigdy by nie nastapil” [s. 289].

Wspélpracownicy Penrose’a wspominaja jego
nieprawdopodobny, niemal mistyczny sposéb myslenia:
,,Odkrycia Penrose’a wygladaja tak, jak gdyby byty
dzietem jakiej$ nadludzkiej formy Zycia”. Barss nie
pomija jednak bardziej ludzkich watkéw — trudnosci
w relacjach, napie¢ emocjonalnych i dylematow, ktore
towarzyszyly uczonemu w zyciu osobistym. To postaé
z krwi 1 kosci... W ksiazce czytamy o jego ludzkich
ograniczeniach, problemach z kobieta, ktéra poslubit,
oraz jego ,muzami” — wybrankami jego potrzeby
tworczej. Dzigki temu portret Penrose’a zyskuje glebie
i wiarygodnosé.

»Roger Penrose” to opowiesé o czltowieku, ktory
calte zycie ktory cate zycie prébowat dotrzeé¢ do
skraju ludzkiego pojmowania rzeczy. Ksiazke
polecam wytrawnym poszukiwaczom prawdy

w fizyce, poszukiwaczom estetyki w matematyce,

a przede wszystkim wielbicielom emocji zwiazanych
z odkrywaniem prawdy o zyciu wybitnych ludzi.

Marzanna WAWRO



