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O manewrze Hohmanna słyszał każdy, kto oglądał film lub czytał książkę
Marsjanin. Tym właśnie sposobem odbywały się tamtejsze przeloty między
Ziemią i Marsem. Manewr ten polega na przeniesieniu pojazdu kosmicznego
z jednej orbity kołowej na inną z wykorzystaniem „transferowej” orbity
eliptycznej. Takiej drogi nigdy nie pokonuje się, lecąc w linii prostej i hamując
dopiero u celu – byłoby to marnotrawstwo energii. Jak się zaraz przekonamy,
w manewrze Hohmanna czasami w ogóle nie ma potrzeby hamowania
(w najprostszej wersji tylko się przyspiesza).

O manewrze Hohmanna pisał również
Grzegorz Derfel w ∆8

20. Ciekawemu
Czytelnikowi polecamy zajrzeć do
wspomnianego artykułu, który opisuje
również manewr dwueliptyczny.
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W manewrze Hohmanna wykorzystuje się dwie sekwencje włączania silników,
generujące przyrosty prędkości ∆v1 w perycentrum oraz ∆v2 w apocentrum
(rysunek obok). Aby określić wielkości skoków ∆v1 i ∆v2, skorzystamy z zasady
zachowania energii na orbicie:
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Równanie to szczególnie łatwo jest analizować w apocentrum i perycentrum
orbity eliptycznej – punktach największego zbliżenia do ogniska i największego
oddalenia (aphelium r2 i peryhelium r1 dla ciał krążących wokół Słońca).
Z zasady zachowania energii:
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Ponadto w tych punktach (na rysunku: punkty, w których zadaje się impulsy
prędkości) prędkość jest prostopadła do promienia, dzięki czemu można łatwo
obliczyć iloczyn wektorowy dla momentu pędu:

mv1r1 = mv2r2.

Z podstawienia powyższego równania do poprzedniego (w celu
wyeliminowania v1):
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Ponieważ dla elipsy r1 + r2 = 2a (dwukrotna wielkość półosi wielkiej), po
skróceniu (r1 − r2)/r1 mamy:
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Korzystając z powyższego równania, możemy wyznaczyć wartość całkowitej
energii ciała na orbicie o danej długości wielkiej półosi:
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Podstawiając tę wartość do zasady zachowania energii przytoczonej na początku
i skracając masę, uzyskujemy tzw. równanie vis-viva (w języku polskim
tłumaczone niekiedy jako „całka siły żywej”):
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Za pomocą tego równania można łatwo znaleźć przyrosty prędkości potrzebne do
zmiany orbity. Jeżeli początkowo jesteśmy na orbicie kołowej, to a = r = r1.
Potem przechodzimy na orbitę eliptyczną, gdzie a = (r1 + r2)/2. W końcu
docieramy do perycentrum elipsy (ew. apocentrum, jeśli planujemy obniżyć
orbitę), gdzie znowu promień równy jest półosi: a = r = r2.
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Transfer z orbity ziemskiej na marsjańską

Policzmy przykładowe przyrosty prędkości podczas transferu na orbitę Marsa
(orbita kołowa o promieniu r2 = 229 mln km) z orbity ziemskiej o promieniu
r1 = 150 mln km). Orbity liczone są wokół Słońca, więc GM⊙ = 1,3 · 1011 km3/s2.
Z równania (∗) mamy:
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przy czym v12 to prędkość na orbicie eliptycznej łączącej orbity Ziemi i Marsa.

W praktyce transfer rzadko jest wykonywany z orbity ziemskiej poza polem
grawitacyjnym Ziemi i rzadko wejście na orbitę marsjańską zachodzi daleko
od Marsa. Rozpoczynając misję na niskiej orbicie okołoziemskiej (Low Earth
Orbit – LEO), vLEO = 7,9 km/s, musielibyśmy się po pierwsze wyzwolić z pola
grawitacyjnego Ziemi (M = 5,97 · 1024 kg, rLEO = 6371 km), a po drugie nadać
sondzie prędkość transferową względem Ziemi. Uwzględniając, że dysponujemy
już częścią energii kinetycznej, związanej z ruchem po orbicie LEO, możemy
rozpisać zachowanie energii:
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vLEO + ∆v = 11,5 km/s ⇒ ∆v = 3,6 km/s.

Powyższą zależność energetyczną można wyrazić w bardziej typowy sposób,
mianowicie: aby uzyskać prędkość v∞ po uwolnieniu się z pola grawitacyjnego
planety, przy założeniu prędkości ucieczki vII =

√
2GM/R, trzeba nadać

pojazdowi kosmicznemu prędkość:

(∗∗) v =
√

v2
II + v2

∞.

Prędkości mierzymy tu względem planety – energia najpierw jest
wykorzystywana na pokonanie pola grawitacyjnego (w wielkości vII

2),
a pozostała część pozostaje zachowana w postaci energii kinetycznej. Jest
to ten sam wzór, który mamy wyżej dla ∆E. Zaniedbujemy tutaj efekty
oddziaływania ze Słońcem i w tym przybliżeniu zajmujemy się orbitą
hiperboliczną (w odległościach pojedynczych milionów kilometrów od planety
możmy zaniedbać zakrzywienie trajektorii związane z oddziaływaniem ze
Słońcem, co upraszcza analizę!).

Załóżmy teraz, że docieramy w okolice Marsa i zastanawiamy się, jak
skorygować prędkość, aby zostać przez niego przechwyconym i wejść na jego
orbitę. Skorzystamy z równania (∗∗) łączącego prędkość orbitalną z prędkością
ucieczki i prędkością v∞, tym razem dla danej prędkości zbliżenia do planety,
v∞ = v2 − v12(r2) = 2,7 km/s. Prędkość ucieczki z Marsa, którego masa wynosi
M♂ = 6,39 · 1023 kg, a promień r♂ = 3390 km, to:

vII,♂ =
√

2GM♂
r♂

= 5,0 km/s.

W efekcie, po przechwyceniu przez grawitację planety, przy założeniu
maksymalnego zbliżenia aż do odległości r♂, prędkość na orbicie hiperbolicznej
(w przybliżeniu zaniedbującym oddziaływanie ze Słońcem) wyniesie:

Jako pożyteczne ćwiczenie dla
Czytelników proponujemy obliczenie
przyrostu ∆v2 z wykorzystaniem orbit
hiperbolicznych, omówionych w ∆10

25.
Wystarczy wyznaczyć parametr zderzenia
dla minimalnego zbliżenia do samej
powierzchni planety, a następnie
wyznaczyć prędkość mijania planety
z zachowania momentu pędu.

v =
√

5,02 + 2,72 = 5,7 km/s.
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Odejmując od tego wyniku prędkość orbitalną Marsa (3,6 km/s), uzyskujemy
wartość drugiego skoku prędkości:

∆v2 = v − vI,♂ = 2,1 km/s.
W konsekwencji całkowity „budżet delta-v” dla wyprawy na Marsa wynosi:

3,6 + 2,1 = 5,7 km/s.

∆v

Aby bliżej uświadomić sobie związek modelowania wejścia na orbitę z orbitami
hiperbolicznymi, warto spojrzeć na powyższy rysunek, gdzie Mars orbituje po
okręgu, a kołową orbitę przecina elipsa Hohmanna. Pod wpływem grawitacji
Marsa w pobliżu planety elipsa (tak naprawdę w tej skali i elipsa Hohmanna,
i koło orbity Marsa wyglądają jak linia prosta!) ugina się i przypomina lokalnie
hiperbolę. Dzięki impulsowi prędkości z hiperboli wchodzimy na orbitę kołową
wokół Marsa.
Zamiast takich obliczeń łatwiej jest wykorzystać tzw. mapy delta-v – tabele
skoków prędkości niezbędnych do dotarcia z punktu startowego do docelowego.
Na takiej mapie rozpoczynamy sumowanie czynników, np. od orbity LEO na
Ziemi, a kończymy na LMO nad Marsem.
Strefy oddziaływań planet
Mapy delta-v są dość czytelne, ale wątpliwości może wzbudzić pojęcie
„przechwycenia” czy „wejścia w sferę oddziaływania” planety. Sfera
oddziaływania definiowana jest jako miejsce, gdzie pojazd kosmiczny – pomiędzy
planetą a Słońcem (czy ogólniej: pomiędzy mniejszym ciałem niebieskim
a dominującym ciałem niebieskim) – odczuwa zerową siłę wypadkową grawitacji
oraz odśrodkową:

GMm

R2 + mω2(r1 − R) − GM⊙m

(r1 − R)2 = 0,

r1 oznacza tu promień orbity planety, a R to odległość strefy oddziaływania od
planety.
Ponieważ orbitalna prędkość kątowa planety wynika z równowagi siły
odśrodkowej z przyciąganiem Słońca:

ω2r1 = GM⊙

r2
1

.

Jednocześnie różnica dwóch ostatnich członów względem punktu równowagi
w r1 jest mała, i aby uprościć rachunki, można skorzystać z następującego
przybliżenia:

1
(r1 − R)2 ≈ 1

r2
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Mamy zatem:
GMm

R2 + GM⊙m

r2
1

− GM⊙m

r3
1
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r2
1

+ 2GM⊙m

r3
1

R.

I stąd możemy wyznaczyć promień sfery oddziaływania dla Ziemi:

R = r1
3

√
M

3M⊙
= 1,5 mln km.
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