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O manewrze Hohmanna pisal réwniez
Grzegorz Derfel w ASO. Ciekawemu
Czytelnikowi polecamy zajrze¢ do
wspomnianego artykutu, ktéry opisuje
réwniez manewr dwueliptyczny.
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Manewr transferowy Hohmanna:
z niskiej orbity ziemskiej na Marsa

Przemystaw BORYS*

O manewrze Hohmanna styszal kazdy, kto ogladal film lub czytal ksiazke
Marsjanin. Tym wtasnie sposobem odbywaly sie tamtejsze przeloty miedzy
Ziemia i Marsem. Manewr ten polega na przeniesieniu pojazdu kosmicznego

z jednej orbity kotowej na inna z wykorzystaniem ,transferowej” orbity
eliptycznej. Takiej drogi nigdy nie pokonuje sig, lecac w linii prostej i hamujac
dopiero u celu — byloby to marnotrawstwo energii. Jak si¢ zaraz przekonamy,
w manewrze Hohmanna czasami w ogdle nie ma potrzeby hamowania

(w najprostszej wersji tylko sie przyspiesza).

W manewrze Hohmanna wykorzystuje sie dwie sekwencje wlaczania silnikéw,
generujace przyrosty predkosci Av; w perycentrum oraz Ave w apocentrum
(rysunek obok). Aby okresli¢ wielkosci skokéw Awvy i Ave, skorzystamy z zasady
zachowania energii na orbicie:
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Roéwnanie to szczegdlnie latwo jest analizowa¢ w apocentrum i perycentrum
orbity eliptycznej — punktach najwiekszego zblizenia do ogniska i najwiekszego
oddalenia (aphelium 79 i peryhelium r; dla cial krazacych wokét Storica).
7 zasady zachowania energii:
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Ponadto w tych punktach (na rysunku: punkty, w ktorych zadaje si¢ impulsy
predkosci) predkosé jest prostopadia do promienia, dzigki czemu mozna tatwo
obliczy¢ iloczyn wektorowy dla momentu pedu:
muiry = Mmuvarsy.

Z podstawienia powyzszego réwnania do poprzedniego (w celu
wyeliminowania v ):
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Poniewaz dla elipsy 71 + 72 = 2a (dwukrotna wielkosé pélosi wielkiej), po
skréoceniu (r1 — 79)/r; mamy:
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Korzystajac z powyzszego réwnania, mozemy wyznaczy¢ wartosé catkowitej
energii ciala na orbicie o danej dtugosci wielkiej pétosi:
mvi GMm GMm GMm GMm GMm

FE = — = —
2 ro T 2a T 2a

Podstawiajac te wartosé do zasady zachowania energii przytoczonej na poczatku
i skracajac mase, uzyskujemy tzw. rédwnanie vis-viva (w jezyku polskim
tlumaczone niekiedy jako ,calka sity zywej”):

(%) v2:GM<2—1>.

rooa
Za pomoca tego réwnania mozna latwo znalezé przyrosty predkoéci potrzebne do
zmiany orbity. Jezeli poczatkowo jesteSmy na orbicie kotowej, to a = r = r;.
Potem przechodzimy na orbite eliptyczna, gdzie a = (r1 + r2)/2. W koricu
docieramy do perycentrum elipsy (ew. apocentrum, jesli planujemy obnizy¢
orbite), gdzie znowu promient réwny jest pélosi: a = r = ro.
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Jako pozyteczne ¢wiczenie dla
Czytelnikéw proponujemy obliczenie
przyrostu Avs z wykorzystaniem orbit
hiperbolicznych, oméwionych w Aég
Wystarczy wyznaczy¢ parametr zderzenia
dla minimalnego zblizenia do samej
powierzchni planety, a nast¢pnie
wyznaczy¢ predkosé mijania planety

z zachowania momentu pedu.

Transfer z orbity ziemskiej na marsjanska

Policzmy przykladowe przyrosty predkosci podczas transferu na orbite Marsa
(orbita kotowa o promieniu ro = 229 mln km) z orbity ziemskiej o promieniu

r1 = 150 mln km). Orbity liczone sa wokét Slotica, wiec GMg = 1,3 - 10 km?® /s2.
Z réwnania (%) mamy:

_ ﬂ — =294km/s,
O
ora(r) \/1 3 1011 ﬁ 1507%229> =324km/s = Av; =3,0km/s,
v12(72) \/1’ 107} % 150_?_229> = 21,2km/s,
vy = % "5399 = 238km/s = Avy =2,6km/s,

przy czym vio to predkosé na orbicie eliptycznej taczacej orbity Ziemi i Marsa.

W praktyce transfer rzadko jest wykonywany z orbity ziemskiej poza polem
grawitacyjnym Ziemi i rzadko wejécie na orbite marsjanska zachodzi daleko

od Marsa. Rozpoczynajac misje na niskiej orbicie okoloziemskiej (Low Earth
Orbit — LEO), vpro = 7,9 kmm/s, musielibySmy sie po pierwsze wyzwolié¢ z pola
grawitacyjnego Ziemi (M = 5,97 - 10%* kg, r.go = 6371 km), a po drugie nadaé
sondzie predkosé transferows wzgledem Ziemi. Uwzgledniajac, ze dysponujemy
juz czescia energii kinetycznej, zwigzanej z ruchem po orbicie LEO, mozemy
rozpisaé zachowanie energii:

AE = - = :
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vLpo + Av =11,5km/s = Av =3,6km/s.

m(vLgo + Av)? mv%EO GMm B mv%EO n m(vyy —v1)?

Powyzsza zaleznodé energetyczna mozna wyrazi¢ w bardziej typowy sposob,
mianowicie: aby uzyskaé¢ predko$é¢ v, po uwolnieniu sie z pola grawitacyjnego
planety, przy zalozeniu predkosci ucieczki v = /2GM /R, trzeba nadaé
pojazdowi kosmicznemu predkosé:

D) v = /v +vX.

Predkosci mierzymy tu wzgledem planety — energia najpierw jest
wykorzystywana na pokonanie pola grawitacyjnego (w wielko$ci vyr?),

a pozostata czesé pozostaje zachowana w postaci energii kinetycznej. Jest

to ten sam wzdr, ktéry mamy wyzej dla AE. Zaniedbujemy tutaj efekty
oddzialywania ze Stonicem i w tym przyblizeniu zajmujemy si¢ orbita
hiperboliczna (w odleglosciach pojedynczych milionéw kilometréw od planety
mozmy zaniedbaé¢ zakrzywienie trajektorii zwigzane z oddzialywaniem ze
Stonicem, co upraszcza analize!).

Zal6zmy teraz, ze docieramy w okolice Marsa i zastanawiamy sie, jak
skorygowaé¢ predkosé, aby zostaé przez niego przechwyconym i wej$é na jego
orbite. Skorzystamy z réwnania (xx) laczacego predko$é orbitalna z predkoscia
ucieczki i predkoscia v, tym razem dla danej predkosci zblizenia do planety,
Voo = Vg — v12(12) = 2,7 km/s. Predkosé ucieczki z Marsa, ktérego masa wynosi
M4y =6,39- 10?3 kg, a promien re = 3390 km, to:

2G M

Ty

Vg = = 5,0km/s.

W efekcie, po przechwyceniu przez grawitacje planety, przy zatozeniu
maksymalnego zblizenia az do odlegtosci r 4, predko$¢ na orbicie hiperbolicznej
(w przyblizeniu zaniedbujacym oddzialywanie ze Storicem) wyniesie:

v =1/5,02+2,72 =57km/s.
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Odejmujac od tego wyniku predko$é orbitalng Marsa (3,6 km/s), uzyskujemy
wartos¢ drugiego skoku predkosci:

Avy =v — vy » = 2,1km/s.

W konsekwencji catkowity ,budzet delta-v” dla wyprawy na Marsa wynosi:
3,64+ 2,1 =5,7km/s.

Aby blizej uswiadomié¢ sobie zwigzek modelowania wejscia na orbite z orbitami
hiperbolicznymi, warto spojrze¢ na powyzszy rysunek, gdzie Mars orbituje po
okregu, a kotowa orbite przecina elipsa Hohmanna. Pod wplywem grawitacji
Marsa w poblizu planety elipsa (tak naprawde w tej skali i elipsa Hohmanna,

i kolo orbity Marsa wygladaja jak linia prosta!) ugina sie i przypomina lokalnie
hiperbole. Dzigki impulsowi predkosci z hiperboli wchodzimy na orbite kotowsa,
wokdl Marsa.

Zamiast takich obliczen latwiej jest wykorzysta¢ tzw. mapy delta-v — tabele
skokéw predkosci niezbednych do dotarcia z punktu startowego do docelowego.
Na takiej mapie rozpoczynamy sumowanie czynnikéw, np. od orbity LEO na
Ziemi, a konczymy na LMO nad Marsem.

Strefy oddzialywan planet

Mapy delta-v sg do$¢ czytelne, ale watpliwosci moze wzbudzi¢ pojecie
»przechwycenia” czy ,wejécia w sfere oddzialywania” planety. Sfera
oddzialywania definiowana jest jako miejsce, gdzie pojazd kosmiczny — pomiedzy
planeta a Slonicem (czy ogdlniej: pomiedzy mniejszym ciatem niebieskim
a dominujacym cialem niebieskim) — odczuwa zerowa sile wypadkowa grawitacji
oraz odsrodkowa:
GMm GMgom
7 +mw2(r1 — R) — ﬁ
r1 oznacza tu promien orbity planety, a R to odlegltoéé¢ strefy oddziatywania od
planety.
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Poniewaz orbitalna predkosé katowa planety wynika z rownowagi sity
odsrodkowej z przyciaganiem Slonca:
w'r, = 5 -
L1
Jednoczes$nie réznica dwbch ostatnich cztonéw wzgledem punktu réwnowagi
w r1 jest mala, i aby uprosci¢ rachunki, mozna skorzysta¢ z nastgpujacego

przyblizenias: p R
1 1 1 1
—sr5—-R|— |5 ]| =5+2=5.
" ()] A
Mamy zatem:

GM GM, GM, GM, GM,
R? i Y ri 1

I stad mozemy wyznaczy¢ promien sfery oddzialywania dla Ziemi:

| M
R:7”13 m:].,&—)mln km.
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Kalkulator trajektorii transferowych: https://trajbrowser.arc.nasa.gov/

Mapa ,delta-v”: https://upload.wikimedia.org/wikipedia/commons/9/93/Solar_system_
delta_v_map.svg
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