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Od wieków ludzie marzą o narzędziu, które byłoby w stanie odpowiedzieć
na każde pytanie. Nie bez powodu wymyślone zostały wyrocznie, magiczne
kule. . . czy też sztuczna inteligencja. Intuicja podpowiada jednak, że nawet
jeśli którekolwiek z powyższych odpowie na nasze pytanie, to do odpowiedzi
powinniśmy podejść z ograniczonym zaufaniem. Czy da się zatem stworzyć
narzędzie, które nigdy się nie myli?

Ograniczmy się do pytań matematycznych. Naszym celem jest więc maszyna,
która po otrzymaniu matematycznego stwierdzenia odpowiada, czy jest ono
prawdziwe, czy też nie. Jeśli założymy, że pytania będą dotyczyć ustalonej
struktury matematycznej, zaś stwierdzenia, o których prawdziwość pytamy, będą
wyrażone w pewnym formalnym języku, to czy możemy mieć nadzieję na sukces?

Logika pierwszego rzędu

Stwierdzenia (zdania) będziemy formułować w tzw. logice pierwszego rzędu.
W uproszczeniu oznacza to, że możemy używać zmiennych (np. x, y, . . .),
kwantyfikatorów ∀, ∃, standardowych spójników logicznych ∧, ∨, ¬, ⇒, nawiasów
oraz symboli funkcyjnych i relacyjnych z pewnego ustalonego wcześniej
zbioru, zwanego sygnaturą. Na przykład sygnaturą może być {=, +, ·}, zaś
zdaniem logiki pierwszego rzędu nad tą sygnaturą ∀x∃y(y + y = x) lub też
∀x∀y∀z(x · y = x · z ⇒ x + y = x + z). Z drugiej strony, zdanie ∀x∈R∃y(x · x) · x = y
nie jest poprawne, i to z kilku powodów: w rozważanej w tym przykładzie
sygnaturze nie ma symbolu relacyjnego ∈ R czy też ∈, a ponadto w logice
pierwszego rzędu przy kwantyfikatorach nie może stać nic więcej oprócz samych
tylko zmiennych. Zajmijmy się więc zdaniami, które są poprawne. Czy zatem
∀x∃y(y + y = x) jest zdaniem prawdziwym? To zależy od kontekstu! Przykładowo
w zbiorze liczb naturalnych, gdzie + oraz · interpretujemy standardowo jako
dodawanie i mnożenie, zdanie ∀x∃y(y + y = x) nie jest prawdziwe. Jeśli jednak
zapytamy o jego prawdziwość w zbiorze liczb rzeczywistych (gdzie + oraz ·
znów interpretujemy standardowo), to poprawna odpowiedź brzmi: prawda.
Nasze pytania powinny więc dotyczyć ustalonej struktury, czyli zbioru wraz
z interpretacjami symboli z sygnatury. Teorią struktury nazywamy zbiór
wszystkich zdań prawdziwych w tej strukturze. Przykładowo, przez ⟨N; +, ·, =⟩
oznaczamy strukturę liczb naturalnych ze standardowo zdefiniowanymi
działaniami + oraz ·, zaś przez Th⟨N; +, ·, =⟩ oznaczamy jej teorię. Mówimy,
że teoria jest rozstrzygalna, jeśli istnieje algorytm, który mając dane na wejściu
zdanie logiki pierwszego rzędu, jest w stanie poprawnie odpowiedzieć, czy należy
ono do tej teorii.O teoriach rozstrzygalnych można

przeczytać również w nieco starszych
wydaniach Delty, np. ∆7

74. (Nie)rozstrzygalność w liczbach naturalnych

Pochylmy się nad teorią Th⟨N; +, ·, =⟩. Zauważmy, że za pomocą mnożenia można
zdefiniować m.in. relację podzielności. Ściślej rzecz biorąc, można wprowadzić
relację a|b, która jest tak naprawdę skrótem zdania ∃c (a · c = b). Mając do
dyspozycji relację podzielności, można też napisać formułę P(p) orzekającą, iż
p jest liczbą pierwszą: ∀a∀b (a · b = p ⇒ (a = p ∨ b = p) ∧ ¬(a = b)). Podobnie
dzięki dodawaniu możemy porównywać liczby, bo a ⩽ b jest tak naprawdę skrótem
zdania ∃c (a + c = b). To pozwala już wyrażać naprawdę wiele twierdzeń. Gdyby
ktoś skonstruował maszynę potrafiącą rozstrzygać, czy dane zdanie należy do tej
teorii, byłby to prawdziwy przełom!

Jednak, jak można się było spodziewać, nie jest tak dobrze! Teoria Th⟨N; +, ·, =⟩Można by chociażby zapytać
o prawdziwość zdania:
∀N ∃p∃q (p ⩾ N ∧ q = p + 2 ∧ P(p) ∧ P(q)) .

rozstrzygalna nie jest, co wnioskujemy z jednego ze słynnych twierdzeń Gödla.
Czy w takim razie cała nadzieja przepadła? Może po prostu chcieliśmy zbyt
wiele? Co by na przykład było, gdyby powstrzymać się od używania mnożenia?
Badania nad teorią Th⟨N; +, =⟩ prowadził już w 1929 roku Mojżesz Presburger
(od jego nazwiska jest ona nazywana arytmetyką Presburgera). Z jego pracy
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można wywnioskować, że teoria ta jest rozstrzygalna! Załóżmy jednak, że
jesteśmy zachłanni i chcemy móc używać jeszcze jakiejś relacji, zachowując
przy tym rozstrzygalność. Wiemy już, że rozszerzenie arytmetyki Presburgera
o mnożenie to zbyt dużo. Jednak może jeśli ograniczymy się do dorzucenia
relacji podzielności |, to zachowamy rozstrzygalność? Niestety nie. Widzieliśmy
już, że mając dodawanie, możemy zdefiniować relację porządku ⩽. Podobnie +
oraz | pozwalają już zdefiniować mnożenie. Formalnie chcemy umieć zastąpić
każde wystąpienie c = a · b równoważnym zdaniem nieużywającym symbolu
mnożenia „·”. Zauważmy, że gdybyśmy mogli podnosić do kwadratu, to byłoby
łatwo. Istotnie, zdanie c = a · b jest równoważne zdaniu c + c + a2 + b2 = (a + b)2.
Ale jak zdefiniować na przykład a2? Niech x będzie najmniejszą liczbą większą
od 1, spełniającą (a − 1)|(x − 1) ∧ (a + 1)|(x − 1). Wówczas jeśli 2|a, to x = a2, zaś
jeśli 2 ∤ a, to x + x = a2 (polecamy zastanowić się nad precyzyjnym uzasadnieniem
tego rozumowania). To już wystarcza do stworzenia definicji. Wniosek jest taki,
że Th⟨N; +, |, =⟩ nie jest rozstrzygalna, bo nad sygnaturą {+, |, =} jesteśmy
w stanie wyrazić to samo co nad sygnaturą {+, ·, =}.
Jak widać, nie jest łatwo rozszerzyć arytmetykę Presburgera, zachowując przy
tym rozstrzygalność. Istnieją jednak nietrywialne przykłady, jak to zrobić.
Jednym z nich jest arytmetyka Semënova, czyli arytmetyka Presburgera
z dodatkiem funkcji pow2(n) = 2n. Zachęcam Czytelnika do pomyślenia nad
ciekawymi przykładami zdań w logice pierwszego rzędu nad sygnaturą tej teorii.
Mnożenie nie takie straszne
Powróćmy do struktury ⟨N; +, ·, =⟩. Czy mnożenie samo w sobie jest
odpowiedzialne za nierozstrzygalność jej teorii? Wcale nie! Okazuje się, że
teoria Th⟨N; ·, =⟩ jest rozstrzygalna, co zostało ogłoszone w pracy Thoralfa
Skolema, a później w pełni udowodnione przez Andrzeja Mostowskiego. Na
cześć tego pierwszego teorię tę nazywamy arytmetyką Skolema. Podobnie jak
wcześniej, zastanówmy się, co można dodać do arytmetyki Skolema, zachowując
rozstrzygalność. Oczywiście dodawanie odpada, ale może na przykład relacja
porządku ⩽? Po pierwsze, za pomocą ⩽ można zdefiniować funkcję następnik
succ(n) = n + 1 (Czytelniku, sprawdź sam!). Następnie można zdefiniować
dodawanie za pomocą tzw. tożsamości Tarskiego:

a + b = c ∨ c = 0 ⇐⇒ succ(ac) · succ(bc) = succ(c2 succ(ab)).
Wynika stąd, że Th(N, ·,⩽) rozstrzygalna nie jest (bo w przeciwnym wypadku
Th⟨N; +, ·, =⟩ byłaby rozstrzygalna). Istnieją jednak relacje, które można dorzucić,
nie tracąc rozstrzygalności. Przykładem jest relacja a ∼ b, która zachodzi wtedy
i tylko wtedy, gdy liczby a, b mają dokładnie tyle samo dzielników pierwszych, nie
wliczając krotności (np. 20 ∼ 6). Fakt ten został udowodniony w 1959 roku przez
Salomona Fefermana i Roberta Vaughta.
Nie tylko liczby naturalne
Jak dotąd przyglądaliśmy się wyłącznie strukturze liczb naturalnych. Rozważmy
więc teraz liczby rzeczywiste. W tym miejscu Czytelnik może poczuć się
zaskoczony. Alfred Tarski udowodnił, iż struktura (R; +, ·, =) ma rozstrzygalną
teorię! Ma to kilka ciekawych następstw. Przykładowo, twierdzenie to implikuje
istnienie algorytmu, który rozstrzyga, czy dane równanie wielomianowe (np.
x4 − 3x + 4 = 0) ma rozwiązanie rzeczywiste. Innym zastosowaniem mogą być
zadania z geometrii analitycznej, które to da się zakodować jako zdania nad
sygnaturą {+, ·, =}. Z twierdzeniem Tarskiego jest też związany intrygującyWięcej o zastosowaniach tego twierdzenia

pisze Lorenzo Clemente w ∆2
23. problem otwarty. Nie wiadomo, czy teoria struktury (R; +, ·, exp, =) (gdzie exp(x)

oznacza funkcję ex) jest rozstrzygalna, czy też nie. Można za to udowodnić, że
teoria struktury (R; +, ·, sin, =) jest nierozstrzygalna.
Na zakończenie dopowiedzmy jeszcze, że teoria Th(Q; +, ·, =) jest nierozstrzygalna
(co zostało udowodnione przez Julię Robinson), a teoria Th(C, +, ·, =) jest
rozstrzygalna (co pozostawiamy jako ćwiczenie). Czytelnikowi pragnącemuPodpowiedź: rozstrzygalność T h(C, +, ·, =)

udowadniamy, korzystając
z rozstrzygalności T h(R; +, ·, =). dowiedzieć się więcej na opisany tu temat polecamy m.in. artykuł A Survey

of Arithmetical Definability autorstwa Alexisa Bèsa.
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