
nerwów składających się w gruby „kabel” nerwu wzrokowego. Jednak aby
otrzymać precyzyjny obraz w układzie jednoreceptorowym, potrzebny jest
solidny system przetwarzania, którego u maleńkiego skorupiaka nie ma.

Proces ewolucji weryfikuje różnego rodzaju rozwiązania. Niektóre z nich znikły
wraz z ginącymi gatunkami, o wielu nigdy się nie dowiemy. Czasem można
jednak podejrzeć, jakie „pomysły” generuje natura. Wciąż trwają, choć nie
rozwinęły się masowo i nie utrwaliły u wyższych organizmów. Co najważniejsze,
widzenie Copilia quadrata oparte na skanowaniu z jej prostym układem
nerwowym może nie daje dobrej jakości obrazu, jednak wychwytuje ruch. Jest
wystarczające dla tych niewielkich skorupiaków, by uniknąć tego, co się rusza.
Jest kluczowe do przeżycia, podobnie jak dla miliardów podobnych stworzeń
nieustannie narażonych na pożarcie przez drapieżniki.

I dobrze, że system jest na tyle mocny, by przetrwać, a na tyle wadliwy, by
zostać pożartym. Bo maleńkie skorupiaki i ich larwy stanowią krytyczny
element w sieci pokarmowej wód. Olbrzymia obfitość tych stworzeń, związana
z ich mizerną szansą na przeżycie, umożliwia rozkwit życia w innych, bardziej
złożonych formach: stawonogów, gąbek, jamochłonów, mięczaków i ryb. A na
końcu, pośrednio, ssaków. Także takich jak ja.

„The curious eye of Copilia”
Gregory R.L., Ross H.E. i Moray N.
Nature 201 (1964)

Marta FIKUS-KRYŃSKA

Zadania
Przygotował Arkadiusz HESS

F 1135. Cząstka jest wyrzucona pionowo w górę z powierzchni Ziemi
z prędkością wystarczającą, aby osiągnąć nieskończoną wysokość (zaniedbując
opór powietrza). Udowodnij, że czas potrzebny do osiągnięcia wysokości h dany
jest wzorem:

t = 1
3

√
2R

g

[(
1 + h

R

)3/2
− 1

]
,

R to promień Ziemi, a g przyspieszenie grawitacyjne na jej powierzchni.
[Źródło: Newtonian Dynamics, Richard Fitzpatrick.]

F 1136. Hydroniusz Kranowski postanowił wykonać w ogrodzie ciekawe
doświadczenie. Zamierzał zmierzyć przepływ wody z kranu ogrodowego
z wykorzystaniem jedynie linijki. Ustalił, że średnica przy miejscu wypływu
ma d1 = 10 mm, a w odległości ∆L = 0,5 m od tego miejsca średnica strumienia
wynosi d2 = 6 mm. Pomóż Hydroniuszowi obliczyć natężenie przepływu wody Q
w jednostkach m3/s.

v2

d1

d2

∆L

v1

Schemat strumienia
wody wypływającego
z kranu

[Zadanie oraz grafika zaczerpnięte z książki: 100 prostych doświadczeń z wodą
i powietrzem Ryszarda Błażejewskiego.]

Przygotował Dominik BUREK

M 1840. Wielomian x3 + px2 + qx + r ma trzy pierwiastki w przedziale (0, 2).
Udowodnić, że

−2 < p + q + r < 0.

M 1841. Dana jest liczba całkowita dodatnia n taka, że
nwd(n, n + 1) < nwd(n, n + 2) < . . . < nwd(n, n + 35).

Udowodnić, że
nwd(n, n + 35) < nwd(n, n + 36).

M 1842. Tabliczka czekolady w kształcie trójkąta równobocznego o boku
długości p składa się z p2 kostek, czyli kawałków w kształcie trójkąta
równobocznego o bokach długości 1, równoległych do boków tabliczki czekolady.
Dwóch graczy na zmianę może odłamać kawałek w kształcie trójkąta (łamiąc
wzdłuż jednej z linii podziału czekolady na kostki). Gracz, który nie ma ruchu
lub zostawi przeciwnikowi dokładnie jedną kostkę, przegrywa. Załóżmy, że p jest
liczbą pierwszą. Który z graczy ma zwycięską strategię?Rozwiązania na str. 24
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Rozwiązania zadań ze strony 5

Rozwiązanie zadania M 1840.
Oznaczmy przez a, b i c pierwiastki wielomianu. Wtedy

x3 + px2 + qx + r = (x − a)(x − b)(x − c).
Wstawiając x = 1, mamy

1 + p + q + r = (1 − a)(1 − b)(1 − c).
Każda z liczb a, b i c leży w przedziale (0, 2), zatem każda z liczb
1 − a, 1 − b, 1 − c leży ściśle pomiędzy w przedziale (−1,1). Wynika
stąd, że iloczyn (1 − a)(1 − b)(1 − c) również leży w przedziale
(−1, 1). Zatem

p + q + r = (1 − a)(1 − b)(1 − c) − 1
leży w przedziale (−2, 0).

Rozwiązanie zadania M 1841.
Zauważmy, że dla dowolnej liczby całkowitej k ⩾ 1 mamy
nwd(n, n + k) ⩽ k, gdyż jeśli liczba pierwsza p dzieli n i n + k,
to dzieli również ich różnicę k. Wobec tego skoro nwd(n, n + 1) = 1
i nwd(n, n + k) rośnie dla k = 1, 2, . . . , 35, to nwd(n, n + k) = k dla
k = 1, 2, . . . , 35. W szczególności oznacza to, że wszystkie liczby
1, 2, . . . , 35 dzielą n, więc 36 = 4 · 9 również dzieli n, a zatem

nwd(n, n + 36) = 36 > 35 = nwd(n, n + 35).

Rozwiązanie zadania M 1842.
Zwycięską strategię ma gracz drugi.

Pierwszego gracza oznaczmy przez A, drugiego przez B. Opiszemy
teraz strategię wygrywającą dla B. Przypuśćmy, że A zjada
kostkę wymiaru k, pozostawiając trapez o bokach k, p − k, p,

p − k. Niech a = max(k, p − k), b = min(k, p − k). Ponieważ
nwd(a, b) = nwd(k, p − k) = 1, więc a ̸= b. Gracz B zjada zatem
trójkąt o boku p − k, pozostawiając równoległobok o wymiarach a

na b. Teraz rozpatrzmy dwa przypadki:

• Załóżmy, że A zjada kawałek o wymiarach mniejszych niż b,
wtedy B zjada kawałek symetryczny względem środka
równoległoboku i wygrywa, gdyż A w tym momencie nie ma
ruchu.

• Jeśli zaś A zjada trójkąt o boku b, pozostawia trapez o bokach
a − b, b, a, b, gdzie znowu nwd(a − b, b) = nwd(a, b) = 1.
Gracz B, kontynuując swoją strategię, doprowadzi do sytuacji,
w której a = b = 1 (gdyż nwd(a, b) = 1), co oznacza, że po
ruchu A pozostaje ostatnia kostka, stąd B wygrywa.

k

a b

Pytanie: Który z graczy ma wygrywającą strategię, jeśli bok
czekolady jest liczbą złożoną?

Rozwiązanie zadania F 1135.
Rozważamy cząstkę wyrzuconą pionowo w górę z powierzchni
Ziemi z prędkością ucieczki. Pomijamy opór powietrza. Zasada
zachowania energii daje:

E = 1
2

mv2 −
GMm

r
= 0 ⇒ v(r) =

√
2GM

r
.

Podstawiamy GM = gR2, gdzie g to przyspieszenie ziemskie na
powierzchni, a R to promień Ziemi:

v(r) =

√
2gR2

r
.

Aby obliczyć czas, jaki zajmuje cząstce osiągnięcie wysokości
h, zauważamy, że prędkość nie jest stała – zmienia się wraz
z odległością od środka Ziemi. Nie możemy więc użyć prostego
wzoru t = s

v
, ponieważ nie ma jednej prędkości dla całej drogi.

Zamiast tego dzielimy ruch na nieskończenie małe odcinki drogi
dr, w których prędkość v(r) można uznać za prawie stałą. Dla
każdego takiego odcinka czas przebycia wynosi właśnie dt = dr

v(r) .
Sumując te małe czasy dla wszystkich odcinków od r = R do
r = R + h, otrzymujemy całkowity czas ruchu jako właśnie całkę:

t =

R+h∫
R

dr

v(r)
=

R+h∫
R

dr√
2gR2

r

= 1√
2gR2

R+h∫
R

√
r dr

= 1√
2gR2

·
[2

3
r3/2

]R+h

R
= 2

3
√

2gR2

(
(R + h)3/2 − R3/2

)
Zauważmy, że (R + h)3/2 = R3/2

(
1 + h

R

)3/2, więc:

t = 1
3

√
2R

g

[(
1 + h

R

)3/2
− 1

]
.

Rozwiązanie zadania F 1136.
Przeanalizujmy sytuację wypływu wody z kranu (zobacz
rysunek na s. 5). Na skutek działania siły grawitacji strumień
wody przyspiesza w miarę oddalania się od wylotu. Zgodnie
z zasadą ciągłości (jedną z postaci prawa zachowania masy)
objętość przepływającej cieczy na jednostkę czasu pozostaje stała.
Przykładowo dla dwóch przekrojów poprzecznych, oznaczonych
jako 1-1 oraz 2-2, możemy zapisać:
(∗) Q = v1A1 = v2A2,

gdzie v1 i v2 to średnie prędkości przepływu cieczy w przekrojach
o polach powierzchni, odpowiednio, A1 oraz A2.

Choć dzisiaj równanie (∗) wydaje się oczywiste, zostało ono
sformułowane dopiero w XVII wieku.

Dla cieczy idealnej (czyli takiej, w której można pominąć straty
energii) równanie Bernoulliego zastosowane do przepływu między
punktami 1-1 i 2-2 przyjmuje postać:

v2
1

2g
+ p1

ϱwg
+ z1 =

v2
2

2g
+ p2

ϱwg
+ z2.

Zakładając, że ciśnienia w obu punktach są równe (p1 = p2 = pa)
oraz że różnica wysokości z1 − z2 = ∆L, powyższe równanie
upraszcza się do postaci:

v2
1 − v2

2
2g

= −∆L.

Uwzględniając związek między prędkością a przepływem:
Q = vA = vπd2/4, ostateczny wzór na strumień objętościowy
przyjmuje postać:

Q =
πd2

2

√
2g∆L

4
√

(d1/d2)4 − 1
.

Zatem aby wyznaczyć natężenie przepływu, wystarczy zmierzyć
trzy wielkości geometryczne: średnice strumienia w dwóch
przekrojach oraz odległość między tymi przekrojami. Po
podstawieniu danych liczbowych otrzymujemy natężenie
3, 4 · 10−5m3/s.
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