at Otwarty 11°: Zwierze w pudetku

Informatyk mégtby stwierdzi¢, ze chodzi
o ciagi binarne, ktérych odlegtos$é
Hamminga jest réwna 1.

Gdybys$my dodali dwa warunki
geometryczne: 1) kazda krawedz ma taka
sama, ustalong, dlugosé i 2) kazde dwie
sgsiednie krawedzie sa wzajemnie
prostopadte, to zaprezentowane kostki
mogliby$my nazwaé n-wymiarowymi
hipersze$cianami, a zalaczony rysunek
prezentowalby przykladowe rzuty na
ptaszczyzne kilku najprostszych
hipersze$cianéw. Sa nimi, odpowiednio,
odcinek, kwadrat, szescian i tesserakt.

Barttomiej PAWLIK

Jakie zwierzatko jest schowane w pudetku? Fizyk zakrzyknalby: Oczywiscie, ze
kot! Natomiast matematyk wie, ze moze chodzi¢ o pewnego jadowitego gada,
ktéremu poswiecony jest niniejszy odcinek naszego Kata.

Politechnika Slaska

Zacznijmy od teoriografowego uogélnienia pojecia pudelka. Kostka n-wymiarows,
nazywamy graf majacy 2" wierzchotkéw, kazdy z nich etykietujemy
jednoznacznie ciggiem binarnym dlugosci n i przyjmujemy, ze dwa wierzcholki
sa polaczone krawedzia, gdy ich ciagi binarne réznia si¢ na dokladnie jednej
pozycji — takie dwa wierzcholki nazywamy sgsiednims.

Ponizej pokazemy przykladowe reprezentacje graficzne kostek wymiaru nie

wiekszego niz 4.
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Skonstruujmy $ciezke w nastepujacy sposob. W rozwazanej kostce zaczynamy
w dowolnie wybranym wierzchotku i w kazdym kroku przechodzimy z ostatnio
odwiedzonego wierzchotka do wierzchotka z nim sasiadujacego tak dlugo, jak
jest to mozliwe zgodnie z zasada: po dotarciu do nowego wierzchotka jego
poprzednik wraz ze wszystkimi swoimi sasiadami jest juz niedostepny.

Zademonstrujmy to na przykladzie kostki tréjwymiarowej (pudetka):

Otrzymana w ten sposéb Sciezke nazywamy wezem.

Dlugosciq weza nazywamy liczbe krawedzi, przez ktore przechodzi. Zauwazmy,
ze kazdy waz w trojwymiarowej kostce ma dilugosé réwna 4, natomiast
w czterowymiarowej mozna skonstruowaé weze réznych dlugosci!

Co ciekawe, dla kazdego n > 2 mozna tatwo skonstruowac

relatywnie krotkiego weza — majacego dtugosé 2n — 2 (czy
wiesz jak?). Troche trudniej jest uzasadnié, ze krétsze

weze nie wystepuja w przyrodzie. Natomiast okreslenie
rozmiaru najdtuzszego weza jest nie lada wyzwaniem!
Obecnie znamy go tylko dla wymiaréw n < 8:

1,2, 4,7, 13, 26, 50, 98

(OEIS: |A099155). Jak dlugi moze byé waz
w 9-wymiarowym pudetku? Jezeli uda Ci sie, Czytelniku,
znalez¢ odpowiedz na to pytanie, to daj mi znac!

Juz wiemy, ze w pudetku matematyka mozna znalezé to samo, co w kieszeni
skapca. Wracajac jednak do kotow — zauwazmy, ze one tez bywaja umieszczane
w roznych miejscach. Koty w pudetkach sg uwielbiane przez fizykow, koty

w workach przez hazardzistéw, a koty w internecie przez nas wszystkich!
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